

DTT65-s

Lightweight Thermal Conductive Gel Pad

LiPOLY DTT65-s is a soft thermally conductive gel pad specifically designed for network ing communication applications.DTT65-s is designed to focus on Dk and Df to reduce interference in RF modules. DTT65-s has a thermal conductivity of 5.0 W/m*K. This product can be supplied as stan dard sheets, custom die-cuts or custom molded parts making it suitable for a wide range of applications.

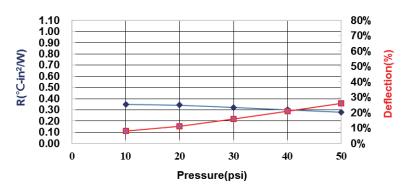
FEATURES

- / Lightweight, Low Density Thermal conductivity: 5.0 W/m*K
- / Hardness: Shore 00/50
- / Low dielectric constant
- / For high frequency applications
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Communications satellite
- / Satellite positioning devices
- / IoT devices
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS


/ Sheet form / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	DTT65-s	TEST METHOD	UNIT
Color	Red	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.1	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore OO
Water absorption	0.005	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	8	ASTM D5470 modify	%
Deflection @20 psi	11	ASTM D5470 modify	%
Deflection @30 psi	16	ASTM D5470 modify	%
Deflection @40 psi	21	ASTM D5470 modify	%
Deflection @50 psi	26	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	10	ASTM D149	KV/mm
Surface resistivity	>1012	ASTM D257	Ohm
Volume resistivity	>10 ¹³	ASTM D257	Ohm-m
Dielectric constant@2GHz Dk	4.131	ASTM D150	-
Dielectric constant@6GHz Dk	4.058	ASTM D150	-
Dielectric constant@10GHz Dk	4.013	ASTM D150	-
Dissipation factor@2GHz Df	0.00509	ASTM D150	-
Dissipation factor@6GHz Dr	0.00658	ASTM D150	-
Dissipation factor@10GHz D _f	0.00780	ASTM D150	-
THERMAL			
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.350	ASTM D5470	°C-in²/W
Thermal impedance@20 psi	0.342	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.323	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.302	ASTM D5470	°C-in²/W
Thermal impedance@50 psi	0.281	ASTM D5470	°C-in²/W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product targets' specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be (minished upon request. All inplute reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright LiPOLY